tR

 


Lý thuyết

1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của một số hữu tỉ x , kí hiệu xn , là tích của n thừa số x ( n là số tự nhiên lớn hợn 1)

xn đọc là x mũ n hoặc x lũy thừa n hoặc lũy thừa bậc n của x.
x: cơ số
n: số mũ
Quy ước: x0  = 1 ( x 0);  x1 = x

Chú ý:

(.)=.()=

+ Lũy thừa số mũ chẵn của 1 số hữu tỉ luôn dương
+ Lũy thừa số mũ lẻ của 1 số hữu tỉ âm luôn âm
+ Lũy thừa số mũ chẵn của 1 số hữu tỉ dương luôn dương
2. Tích và thương hai lũy thừa cùng cơ số
+ Khi nhân 2 lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng 2 số mũ

xm . xn = xm+n

+ Khi chia 2 lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi lũy thừa của số chia

xm : xn = xm-n (0;)

Ví dụ: 74 . 78 = 74+8 = 712

75 : (-7)2 = 75 : 72 = 75-2 = 73

3. Lũy thừa của lũy thừa

Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ.

(xm)n = xm.n

Ví dụ: [(-3)3]4 = (-3)3.4 = (-3)12

4. Mở rộng 

Lũy thừa với số mũ nguyên âm của một số hữu tỉ

=1(0)

Ví dụ: 32=132




0 Comments:

Đăng nhận xét

 
Top